
1 月 24 日消息,最近,Meta AI 推出了這樣一個“雜食者”(Omnivore)模型,可以對不同視覺模態的數據進行分類,包括圖像、視頻和 3D 數據。
比如面對最左邊的圖像,它可以從深度圖、單視覺 3D 圖和視頻數據集中搜集出與之最匹配的結果。
這在之前,都要分用不同的模型來實現;現在一個模型就搞定了。
而且 Omnivore 易于訓練,使用現成的標準數據集,就能讓其性能達到與對應單模型相當甚至更高的水平。
實驗結果顯示,Omnivore 在圖像分類數據集 ImageNet 上能達到 86.0% 的精度,在用于動作識別的 Kinetics 數據集上能達 84.1%,在用于單視圖 3D 場景分類的 SUN RGB-D 也獲得了 67.1%。
另外,Omnivore 在實現一切跨模態識別時,都無需訪問模態之間的對應關系。
不同視覺模態都能通吃的“雜食者”
Omnivore 基于 Transformer 體系結構,具備該架構特有的靈活性,并針對不同模態的分類任務進行聯合訓練。
模型架構如下:
Omnivore 會將輸入的圖像、視頻和單視圖 3D 圖像轉換為 embedding,并饋送到 Transformer 中。
雖然它可以使用任何 vision transformer 架構來處理 patch embedding,但鑒于 Swin transformer 在圖像和視頻任務上的強大性能,這里就使用該架構作為基礎模型。
具體來說,Omnivore 將圖像轉為 patch,視頻轉為時空 tube(spatio-temporal tube),單視圖 3D 圖像轉為 RGB patch 和深度 patch。
然后使用線性層將 patches 映射到到 embedding 中。其中對 RGB patch 使用同一線性層,對深度 patch 使用單獨的。
總的來說,就是通過 embedding 將所有視覺模式轉換為通用格式,然后使用一系列時空注意力(attention)操作來構建不同視覺模式的統一表示。
研究人員在 ImageNet-1K 數據集、Kinetics-400 數據集和 SUN RGB-D 數據集上聯合訓練出各種 Omnivore 模型。
這種方法類似于多任務學習和跨模態對齊,但有 2 點重要區別:
1、不假設輸入觀測值對齊(即不假設圖像、視頻和 3D 數據之間的對應關系);
2、也不假設這些數據集共享相同的標簽空間(label space)。
性能超 SOTA
實驗方面,首先將 Omnivore 與各視覺模態對應的特定模型(下表中指 Specific)進行比較。
一共有三種不同的模型尺寸:T、S 和 B。
預訓練模型在七個下游任務上都進行了微調。
圖像特定模型在 IN1K 上預訓練。視頻特定模型和單視圖 3D 特定模型均使用預訓練圖像特定模型的 inflation 進行初始化,并分別在 K400 和 SUN RGB-D 上進行微調。
結果發現,Omnivore 在幾乎所有的下游任務上的性能都相當于或優于各特定模型。
其中尺寸最大的 Swin-B 實現了全部任務上的 SOTA。
將 Omnivore 與具有相同模型架構和參數數量的特定模型比較也是相同的結果。
其中 Omnivore 在 IN1K、K400 和 SUN 數據集上從頭開始聯合訓練,而特定模態的模型針對每個數據集專門訓練:
ImageSwin 模型從零開始訓練,VideoSwin 和 DepthSwin 模型則從 ImageSwin 模型上進行微調。
接下來將 Omnivore 與圖像、視頻和 3D 數據分類任務上的 SOTA 模型進行比較。
結果仍然不錯,Omnivore 在所有預訓練任務中都表現出了優于 SOTA 模型的性能(下圖從上至下分別為圖像、視頻和 3D 數據)。
此外,在 ImageNet-1K 數據集上檢索給定 RGB 圖像的深度圖也發現,盡管 Omnivore 沒有接受過關于 1K 深度圖的訓練,但它也能夠給出語義相似的正確答案。
最后,作者表示,盡管這個“雜食者”比傳統的特定模式模型有了很多進步,但它有一些局限性。
比如目前它僅適用于單視圖 3D 圖像,不適用于其他 3D 表示,如體素圖(voxels)、點云圖等。
網站首頁 |網站簡介 | 關于我們 | 廣告業務 | 投稿信箱
Copyright © 2000-2020 www.yushuoyun.cn All Rights Reserved.
中國網絡消費網 版權所有 未經書面授權 不得復制或建立鏡像
聯系郵箱:920 891 263@qq.com
www.亚洲男人天堂_欧美最顶级的aⅴ艳星_国产精品免费网站_欧美日韩在线一区_欧美床上激情在线观看_日韩av色在线_国产精品亚洲综合天堂夜夜_欧美做爰性生交视频_国产成人高潮免费观看精品_久久天天躁夜夜躁狠狠躁2022_国产美女久久精品香蕉69_亚洲专区在线视频_国产精品夜间视频香蕉_国产成人综合一区二区三区_国产精品69av_岛国av午夜精品